高一数学第一课内容什么是集合(高中一年级数学教案:集合的含义及表示)

堵薇梦
导读 大家好,霖霖来为大家解答以上问题。高一数学第一课内容什么是集合,高中一年级数学教案:集合的含义及表示很多人还不知道,现在让我们一起

大家好,霖霖来为大家解答以上问题。高一数学第一课内容什么是集合,高中一年级数学教案:集合的含义及表示很多人还不知道,现在让我们一起来看看吧!

  1、 集合是中学数学的一个重要的基本概念

  在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

  把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础

  例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明

  然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的引言和集合的基本概念

  学习引言是引发学生的学习兴趣,使学生认识学习本章的意义

  本节课的教学重点是集合的基本概念。

  集合是集合论中的原始的、不定义的概念

  在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识

  教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集

  ”这句话,只是对集合概念的.描述性说明。

  教学过程:

  一、复习引入:

  1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2.教材中的章头引言;

  3.集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)。

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

  (2)正整数集:非负整数集内排除0的集,记作N*或N+,N*={1,2,3,…}

  (3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}

  (4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

  (5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集,记作N*或N+

  Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写。

本文到此结束,希望对大家有所帮助。

标签: 高中一年级数学教案:集合的含义及表示

免责声明:本文由用户上传,如有侵权请联系删除!